Fork me on GitHub

C-RNN-GAN: Continuous recurrent neural networks with adversarial training


Generative adversarial networks have been proposed as a way of efficiently training deep generative neural networks. We propose a generative adversarial model that works on continuous sequential data, and apply it by training it on a collection of classical music. We conclude that it generates music that sounds better and better as the model is trained, report statistics on generated music, and let the reader judge the quality by downloading the generated songs.

Generated music samples


More samples of generated music can be downloaded from

Source code

The source code used for the experiments can be downloaded from

Olof Mogren

Constructive Machine Learning Workshop (CML) at NIPS
PDF Fulltext

Olof Mogren, PhD, RISE Research institutes of Sweden. Follow me on Mastodon.