TEXT
I am a senior research scientist at RISE Research institutes of Sweden
heading The Deep Learning Research Group. I have a PhD from Chalmers University of Technology, and I am the organizer of RISE Learning Machines Seminars.
I work on problems within applied AI where privacy, fairness, and efficiency is central. This includes work on federated learning, privacy-preserving representation learning, and generative adversarial networks. I work with many data modalities, including natural language, vision, and speech.
Some of our ongoing projects include The Federated Learning Testbed, The Swedish Medical Language Data Lab, AI Driven Financial Risk Assessment of Circular Business Models, and Smart Fire Detection.
Read more about me, or about my research group.
arXiv
Fully Convolutional Networks for Dense Water Flow Intensity Prediction in Swedish Catchment Areas: Intensifying climate change will lead to more extreme weather events, including heavy rainfall and drought. Accurate stream flow prediction models which are adaptable and robust to new circumstances in a changing climate will be an important source of information for decisions on climate adaptation efforts, especially regarding mitigation of the risks of and damages associated with flooding. In this work we propose a machine learning-based approach for predicting water flow intensities in inland watercourses based on the physical characteristics of the catchment areas, obtained from geospatial data (including elevation and soil maps, as well as satellite imagery), in addition to temporal information about past rainfall quantities and temperature variations. We target the one-day-ahead regime, where a fully convolutional neural network model receives spatio-temporal inputs and predicts the water flow intensity in every coordinate of the spatial input for the subsequent day. To the best of our knowledge, we are the first to tackle the task of dense water flow intensity prediction; earlier works have considered predicting flow intensities at a sparse set of locations at a time. An extensive set of model evaluations and ablations are performed, which empirically justify our various design choices. Code and preprocessed data have been made publicly available at this https URL.
2022 IEEE International Conference on Big Data
EFFGAN: Ensembles of fine-tuned federated GANs: Generative adversarial networks have proven to be a powerful tool for learning complex and high-dimensional data distributions, but issues such as mode collapse have been shown to make it difficult to train them. This is an even harder problem when the data is decentralized over several clients in a federated learning setup, as problems such as client drift and non-iid data make it hard for federated averaging to converge. In this work, we study the task of how to learn a data distribution when training data is heterogeneously decentralized over clients and cannot be shared. Our goal is to sample from this distribution centrally, while the data never leaves the clients. We show using standard benchmark image datasets that existing approaches fail in this setting, experiencing so-called client drift when the local number of epochs becomes to large. We thus propose a novel approach we call EFFGAN: Ensembles of fine-tuned federated GANs. Being an ensemble of local expert generators, EFFGAN is able to learn the data distribution over all clients and mitigate client drift. It is able to train with a large number of local epochs, making it more communication efficient than previous works.
DCASE 2022
Few-shot bioacoustic event detection using a prototypical network ensemble with adaptive embedding functions: In this report we present our method for the DCASE 2022 challenge on few-shot bioacoustic event detection. We use an ensemble of prototypical neural networks with adaptive embedding functions and show that both ensemble and adaptive embedding functions can be used to improve results from an average F-score of 41.3% to an average F-score of 60.0% on the validation dataset.
Business Strategy and the Environment
Financing Solutions for Circular Business Models: Exploring the Role of Business Ecosystems and Artificial Intelligence: Circular economy promotes a transition away from linear modes of production and consumption to systems with circular material flows that can significantly improve resource productivity. However, transforming linear business models to circular business models posits a number of financial consequences for product companies as they need to secure more capital in a stock of products that will be rented out over time and therefore will encounter a slower, more volatile cash flow in the short term compared to linear direct sales of products. This paper discusses the role of financial actors in circular business ecosystems and alternative financing solutions when moving from product-dominant business models to product-as-a-service or function-based business models and demonstrates a solution where state-of-the-art AI modelling can be incorporated for financial risk assessment. We provide an open implementation and a thorough empirical evaluation of an AI-model which learns to predict residual value of stocks of used items. Furthermore, the paper highlights solutions, managerial implications and potentials for financing circular business models, argues the importance of different forms of data in future business ecosystems, and puts forward recommendations for how AI can help overcoming some of the challenges ahead.
Fire Technol.
A Novel Method for Smart Fire Detection Using Acoustic Measurements and Machine Learning: Proof of Concept: Fires are a major hazard resulting in high monetary costs, personal suffering, and irreplaceable losses. The consequences of a fire can be mitigated by early detection systems which increase the potential for successful intervention. The number of false alarms in current systems can for some applications be very high, but could be reduced by increasing the reliability of the detection system by using complementary signals from multiple sensors. The current study investigates the novel use of machine learning for fire event detection based on acoustic sensor measurements. Many materials exposed to heat give rise to acoustic emissions during heating, pyrolysis and burning phases. Further, sound is generated by the heat flow associated with the flame itself. The acoustic data collected in this study is used to define an acoustic sound event detection task, and the proposed machine learning method is trained to detect the presence of a fire event based on the emitted acoustic signal. The method is able to detect the presence of fire events from the examined material types with an overall F-score of 98.4%. The method has been developed using laboratory scale tests as a proof of concept and needs further development using realistic scenarios in the future.
Editor's choice: Best paper award in The Journal of Fire Technology 2022. More info.
FL-IJCAI'22
Decentralized adaptive clustering of deep nets is beneficial for client collaboration: We study the problem of training personalized deep learning models in a decentralized peer-to-peer setting, focusing on the setting where data distributions differ between the clients and where different clients have different local learning tasks. We study both covariate and label shift, and our contribution is an algorithm which for each client finds beneficial collaborations based on a similarity estimate for the local task. Our method does not rely on hyperparameters which are hard to estimate, such as the number of client clusters, but rather continuously adapts to the network topology using soft cluster assignment based on a novel adaptive gossip algorithm. We test the proposed method in various settings where data is not independent and identically distributed among the clients. The experimental evaluation shows that the proposed method performs better than previous state-of-the-art algorithms for this problem setting, and handles situations well where previous methods fail.
IEEE BigData 2021
Adversarial representation learning for synthetic replacement of private attributes: Data privacy is an increasingly important aspect of the analysis of big data for many real-world tasks. Privacy enhancing transformations of data can help unlocking the potential in data sources containing sensitive information, but finding the right balance between privacy and utility is often a tricky trade-off. In this work, we study how adversarial representation learning can be used to ensure the privacy of users, and to obfuscate sensitive attributes in existing datasets. While previous methods using this kind of approach only aim at obfuscating the sensitive information, we find that adding new information in its place strengthens the provided privacy. We propose a two step data privatization method that builds on generative adversarial networks: in the first step, sensitive data is removed from the representation, and in the second step, a sample which is independent of the input data is inserted in its place. The result is an approach that can provide stronger privatization on image data, and yet be preserving both the domain and the utility of the inputs.
FL-ICML 2021
Decentralized federated learning of deep neural networks on non-iid data: We tackle the non-convex problem of learning a personalized deep learning model in a decentralized setting. More specifically, we study decentralized federated learning, a peer-to-peer setting where data is distributed among many clients and where there is no central server to orchestrate the training. In real world scenarios, the data distributions are often heterogeneous between clients. Therefore, in this work we study the problem of how to efficiently learn a model in a peer-to-peer system with non-iid client data. We propose a method named Performance-Based Neighbor Selection (PENS) where clients with similar data distributions detect each other and cooperate by evaluating their training losses on each other’s data to learn a model suitable for the local data distribution. Our experiments on benchmark datasets show that our proposed method is able to achieve higher accuracies as compared to strong baselines.
ICML-SAS 2020
Adversarial representation learning for private speech generation: As more and more data is collected in various settings across organizations, companies, and countries, there has been an increase in the demand of user privacy. Developing privacy preserving methods for data analytics is thus an important area of research. In this work we present a model based on generative adversarial networks (GANs) that learns to obfuscate specific sensitive attributes in speech data. We train a model that learns to hide sensitive information in the data, while preserving the meaning in the utterance. The model is trained in two steps: first to filter sensitive information in the spectrogram domain, and then to generate new and private information independent of the filtered one. The model is based on a U-Net CNN that takes mel-spectrograms as input. A MelGAN is used to invert the spectrograms back to raw audio waveforms. We show that it is possible to hide sensitive information such as gender by generating new data, trained adversarially to maintain utility and realism.
JHIR
Blood glucose prediction with variance estimation using recurrent neural networks: Many factors affect blood glucose levels in type 1 diabetics, several of which vary largely both in magnitude and delay of the effect. Modern rapid-acting insulins generally have a peak time after 60–90 min, while carbohydrate intake can affect blood glucose levels more rapidly for high glycemic index foods, or slower for other carbohydrate sources. It is important to have good estimates of the development of glucose levels in the near future both for diabetic patients managing their insulin distribution manually, as well as for closed-loop systems making decisions about the distribution. Modern continuous glucose monitoring systems provide excellent sources of data to train machine learning models to predict future glucose levels. In this paper, we present an approach for predicting blood glucose levels for diabetics up to 1 h into the future. The approach is based on recurrent neural networks trained in an end-to-end fashion, requiring nothing but the glucose level history for the patient. Our approach obtains results that are comparable to the state of the art on the Ohio T1DM dataset for blood glucose level prediction. In addition to predicting the future glucose value, our model provides an estimate of its certainty, helping users to interpret the predicted levels. This is realized by training the recurrent neural network to parameterize a univariate Gaussian distribution over the output. The approach needs no feature engineering or data preprocessing and is computationally inexpensive. We evaluate our method using the standard root-mean-squared error (RMSE) metric, along with a blood glucose-specific metric called the surveillance error grid (SEG). We further study the properties of the distribution that is learned by the model, using experiments that determine the nature of the certainty estimate that the model is able to capture.
CVCREATIVE 2019
Semantic segmentation of fashion images using feature pyramid networks: We approach fashion image analysis through semantic segmentation of fashion images, using both textural information and cues from shape and context, where target classes are clothing categories. Our main contributions are state-of-the-art semantic segmentation of fashion images with modest memory and compute requirements.
JLM 2019
Character-based recurrent neural networks for morphological relational reasoning: We present a model for predicting inflected word forms based on morphological analogies. Previous work includes rule-based algorithms that determine and copy affixes from one word to another, with limited support for varying inflectional patterns. In related tasks such as morphological reinflection, the algorithm is provided with an explicit enumeration of morphological features which may not be available in all cases. In contrast, our model is feature-free: instead of explicitly representing morphological features, the model is given a demo pair that implicitly specifies a morphological relation (such as write:writes specifying infinitive:present). Given this demo relation and a query word (e.g. watch), the model predicts the target word (e.g. watches). To address this task, we devise a character-based recurrent neural network architecture using three separate encoders and one decoder. Our experimental evaluation on five different languages shows that the exact form can be predicted with high accuracy, consistently beating the baseline methods. Particularly, for English the prediction accuracy is 95.60%. The solution is not limited to copying affixes from the demo relation, but generalizes to words with varying inflectional patterns, and can abstract away from the orthographic level to the level of morphological forms.
The source code used for the experiments can be downloaded from https://github.com/olofmogren/char-rnn-wordrelations.
CML 2016
C-RNN-GAN: Continuous recurrent neural networks with adversarial training: Generative adversarial networks have been proposed as a way of efficiently training deep generative neural networks. We propose a generative adversarial model that works on continuous sequential data, and apply it by training it on a collection of classical music. We conclude that it generates music that sounds better and better as the model is trained, report statistics on generated music, and let the reader judge the quality by downloading the generated songs.
2023-05-23
Tutorial at EUREF 2023: AI for the environment:
2021-09-15
AI for chemistry and process industry: