

Transfer and privacy

MLDS GBG Meetup, Nov. 2019

Olof Mogren, Research institutes of Sweden

AI at RISE

- STHLM, GBG, LKPG, V-ås, Luleå, Lund
- Research projects
 - Industry
 - Public authorities
 - Academia
- Gothenburg deep learning group
 - Machine learning seminars Every Thursday at 15 * Lindholmspiren 3A Open to the public
- * 14/11: John Martinsson; Adversarial privacy

- Today: supervised learning
- Training data: {x, y}ⁿ₀
- Decision boundary
- Underfitting
- Overfitting
- Generalization
- No free lunch (Wolpert, 1996)

• Today: supervised learning guinea pro • Training data: $\{\mathbf{x}, y\}_0^n$ Decision boundary Underfitting weight • Overfitting Generalization No free lunch whiskers length (Wolpert, 1996)

- Today: supervised learning
- Training data: $\{\mathbf{x}, y\}_0^n$
- Decision boundary
- Underfitting
- Overfitting
- Generalization
- No free lunch (Wolpert, 1996)

- Today: supervised learning
- Training data: {x, y}ⁿ₀
- Decision boundary
- Underfitting
- Overfitting
- Generalization
- No free lunch (Wolpert, 1996)

• Today: supervised learning guinea pi • Training data: $\{\mathbf{x}, y\}_0^n$ Decision boundary Underfitting weight • Overfitting Generalization No free lunch whiskers length (Wolpert, 1996)

Deep learning

- Sequence of transformations
- Learning to compute representations
- Depth adds representation power
- (Zero hidden layers \rightarrow linear model)

Levels of abstractions

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

enough units ↓ universal approximation

Universal approximation theorem: A feed forward net with enough hidden units can approximate any continuous function with arbitrary precision. (Balázs, et.al., 2001)

Remember

Require large amounts of training data

• High representational capacity \rightarrow large data requirements

Choices when data is limited

- Go get some more!
- Data augmentation
- Generate synthetic data
- Use some other data

Multi-task learning

One model, two tasks

task-specific outputs task-specific outputs task-specific transformations task-specific transformations common transformations task-specific transformations

Transfer learning

1. Pretrain 2. Fine-tune

E.g., Un-, Semi-, Supervised

Imagenet pretraining (1/3)

Razavian, et.al., 2014

Imagenet pretraining (2/3)

Razavian, et.al., 2014

Imagenet pretraining (3/3)

Razavian, et.al., 2014

Semantic segmentation

Pyramid Scene Parsing Network, Zhao, et.al., 2016

Semantic segmentation of fashion images

Martinsson, Mogren (Extra)

3D pose estimation

Doersch and Doersch, NeurIPS 2019 (Extra)

Transfer learning in language

- Natural language processing, NLP
 - Discrete data
 - Large sources of text available ((weekly or un-) annotated)
 - Embeddings
 - bag-of-words (Schütze, 1993)
 - word2vec (Mikolov, et.al., 2013)
 - Glove (Pennington, et.al., 2015)
 - End-to-end; not yet always

NLP, Transformers

- Deep transfer learning for language
- Transfer learning/unsupervised pretraining

Applying Transformers

- Representation learning, e.g. QA (Nadhan, Mondal, 2019)
- Finetuning, e.g. summarization of podcasts (Risne, Siitova, 2019)

Multilingual Transformers

- Multilingual BERT
- XLM-R
 - Pretrain on 100 languages
 - Fine-tune on one language
 - Improved performance on low-resouce languages

Differential privacy; a definition

If the output from an algorithm **does not change much** with **small** changes in the input dataset, the algorithm is **differentially private**.

Age	Gender	BMI	Fever	Naus∉	Headac₿	Diarrhea	Fatigue 🕈	Jaund▶	Epi	WBC	RBC	HGB	Plat	AST 1
56	1	35	2	1	1	1	2	2	2	7425	4248807	14	112132	99
46	1	29	1	2	2	1	2	2	1	12101	4429425	10	129367	91
57	1	33	2	2	2	2	1	1	1	4178	4621191	12	151522	113
49	2	33	1	2	1	2	1	2	1	6490	4794631	10	146457	43
59	1	32	1	1	2	1	2	2	2	3661	4606375	11	187684	99
58	2	22	2	2	2	1	2	2	1	11785	3882456	15	131228	66
42	2	26	1	1	2	2	2	2	2	11620	4747333	12	177261	78
48	2	30	1	1	2	2	1	1	2	7335	4405941	11	216176	119
44	1	23	1	1	2	2	2	1	2	10480	4608464	12	148889	93
45	1	30	2	1	2	2	1	1	2	6681	4455329	12	98200	55
37	2	24	2	1	2	1	2	2	1	4437	4265042	12	166027	103
36	1	22	2	2	1	1	1	1	1	6052	4130219	13	144266	75
45	2	25	2	1	1	1	2	1	2	9279	4116937	13	203003	97
				0			-	0		5000	4004000		4 4 4 4 4 0	100

But...

ML models work by looking at data to learn patterns from it.

Privacy

Learn details about individual data points

Learn general patterns about data

"Jane Smith has a heart disease"

http://mogren.one/

"People who smoke risk getting heart diseases"

, Privacy

Learn details about individual data points

"Jane Smith has a heart disease"

Learn general patterns about data

"**People who smoke** risk getting heart diseases"

Does deep learning memorize data?

Good generalization ↓ general patterns, not specific details

Private aggregation of teacher ensembles

- 1 Divide training set into disjoint parts
- 2 Train ensemble on parts; noisy voting
- 3 Train student with ensemble as oracle
- Adversary can query student model

http://mogren.one/

PATE, Papernot, et.al., 2016

Privacy

- Overfitting; memorizing specifics about the training data.
- Limiting overfitting can lead to improving privacy but this neat side-effect may not be enough in practice.

Adversarially learned privacy (1/2)

- Learn to fool adversary for sensitive attribute
- Produce sensitive attribute from population-level distribution

Adversarially learned privacy (2/2)

Top row: input. Middle row non-smiling output. Bottom: smiling output.

Martinsson, Listo Zec, Gillblad, Mogren, 2019

More adversarial representation learning on Thursday!

