Unsupervised pretraining

of deep neural networks

Olof Mogren, Research institutes of Sweden

Neural network pretraining

- Weight initialization
- Limited data
- Leverage knowledge from other data source
- Overcome vanishing gradients
- Start a revolution (author(s), year?)

(Using Imagenet classification), Razavian, et.al., 2014

http://mogren.one/

RI. SE

Self-supervised learning

A class of unsupervised learning techniques.

- Predict relative position of patches
- Reorder shuffled patches
- Image completion
- Video next frame prediction
- Word embeddings
- Language models, Transformers
- etc.

Unsupervised

-learning

- Hebbian learning ("fire together, wire together")
- Self-organization
- Model probability density of inputs
- Clustering
- Dimensionality reduction
- Self-supervised learning

-pretraining

- Clustering
- Dimensionality reduction
- Restricted Boltzmann machines
- Autoencoders

Restricted Boltzmann machines (RBMs)

- Generative model
- Contrastive divergence
- Maximum likelihood
- Deep belief networks (Hinton et.al. 2006)
- Deep Boltzmann machines

Autoencoders

- Neural network trained to reproduce its input
- Unsupervised layerwise pretraining
- Bottleneck
- Denoising
- Stacked

- Popular for tasks such as image classification
- Randomly initialized convnet performs much better than chance

Convnet pretraining using clustering

- Adam Coates, Andrew Ng. (2012): Layerwise k-means
- Dosovitskiy, et.al. (2014), "Surrogate" classification
- Yang, et.al. (2016), Recurrent agglomerative clustering
- Xie, et.al. (2016), Deep embedded clustering
- Liao, et.al. (2016), K-means

Deep clustering for unsupervised learning of visual features

- Begin with randomly initialized convnet
- Cluster data based on computed representations
 - (PCA reduction to 256 dims, whitened, ℓ_2 -normalized)
- Train supervised with cluster assignments as labels
- Repeat

Nuts and bolts

- Avoiding trivial clusterings: When a cluster *i* becomes empty:
 - Pick another cluster *j*, use centroid of *j* with small perturbation as centroid of *i*
- Sobel filtering

More

- Dropout
- Constant step-size
- ℓ_2 regularization
- Momentum

• Linear classifier trained on frozen representations

Hyperparameters are selected based on a down-stream task.

Including K.

Conv1

Fig. 3: Filters from the first layer of an AlexNet trained on unsupervised ImageNet on raw RGB input (left) or after a Sobel filtering (right).

Filter visualizations

Fig. 4: Filter visualization and top 9 activated images from a subset of 1 million images from YFCC100M for target filters in the layers conv1, conv3 and conv5 of an AlexNet trained with DeepCluster on ImageNet. The filter visualization is obtained by learning an input image that maximizes the response to a targener.

Conv1

Fig. 5: Top 9 activated images from a random subset of 10 millions images from YFCC100M for target filters in the last convolutional layer. The top row corhttp://mogren rome/nds to filters sensitive to activations by images containing objects. The

	ImageNet			Places						
Method	conv1	conv2	conv3	conv4	conv5	conv1	conv2	conv3	conv4	conv5
Places labels	_	_	_	_	_	22.1	35.1	40.2	43.3	44.6
ImageNet labels	19.3	36.3	44.2	48.3	50.5	22.7	34.8	38.4	39.4	38.7
Random	11.6	17.1	16.9	16.3	14.1	15.7	20.3	19.8	19.1	17.5
Pathak et al. 38	14.1	20.7	21.0	19.8	15.5	18.2	23.2	23.4	21.9	18.4
Doersch $et al.$ 25	16.2	23.3	30.2	31.7	29.6	19.7	26.7	31.9	32.7	30.9
Zhang et al. 28	12.5	24.5	30.4	31.5	30.3	16.0	25.7	29.6	30.3	29.7
Donahue $et al.$ 20	17.7	24.5	31.0	29.9	28.0	21.4	26.2	27.1	26.1	24.0
Noroozi and Favaro 26	18.2	28.8	34.0	33.9	27.1	23.0	32.1	35.5	34.8	31.3
Noroozi <i>et al.</i> 45	18.0	30.6	34.3	32.5	25.7	23.3	33.9	36.3	34.7	29.6
Zhang $et al.$ 43	17.7	29.3	35.4	35.2	32.8	21.3	30.7	34.0	34.1	32.5
DeepCluster	12.9	29.2	38.2	39.8	36.1	18.6	30.8	37.0	37.5	33.1

Table 1: Linear classification on ImageNet and Places using activations from the convolutional layers of an AlexNet as features. We report classification accuracy on the central crop. Numbers for other methods are from Zhang *et al.* 43.

	Classification		Detection		Segmentation	
Method	FC6-8	ALL	FC6-8	ALL	FC6-8	ALL
ImageNet labels	78.9	79.9	_	56.8	_	48.0
Random-rgb	33.2	57.0	22.2	44.5	15.2	30.1
Random-sobel	29.0	61.9	18.9	47.9	13.0	32.0
Pathak <i>et al.</i> 38	34.6	56.5	_	44.5	_	29.7
Donahue $et al.$ 20 [*]	52.3	60.1	_	46.9	_	35.2
Pathak et al. 27	_	61.0	_	52.2	_	_
Owens et al. 44 [*]	52.3	61.3	_	_	_	_
Wang and Gupta 29 [*]	55.6	63.1	32.8^{\dagger}	47.2	26.0^{\dagger}	35.4^{\dagger}
Doersch et al. 25 [*]	55.1	65.3	_	51.1	_	_
Bojanowski and Joulin 19*	56.7	65.3	33.7^{\dagger}	49.4	26.7^{\dagger}	37.1^{\dagger}
Zhang et al. 28 [*]	61.5	65.9	43.4^\dagger	46.9	35.8^{\dagger}	35.6
Zhang et al. 43^*	63.0	67.1	_	46.7	_	36.0
Noroozi and Favaro 26	_	67.6	_	53.2	_	37.6
Noroozi <i>et al.</i> 45	_	67.7	_	51.4	_	36.6
DeepCluster	70.4	73.7	51.4	55.4	43.2	45.1

Table 2: Comparison of the proposed approach to state-of-the-art unsupervised feature learning on classification, detection and segmentation on PASCAL VOC. * indicates the use of the data-dependent initialization of Krähenbühl *et al.* [68]. http://mogren.bnu/bers for other methods produced by us are marked with a †.

		Classif	Classification		Detection		Segmentation	
Method	Training set	FC6-8	ALL	FC6-8	ALL	FC6-8	ALL	
Best competitor	ImageNet	63.0	67.7	43.4^\dagger	53.2	35.8^\dagger	37.7	
DeepCluster DeepCluster	ImageNet YFCC100M	$72.0 \\ 67.3$	$73.7 \\ 69.3$	51.4 45.6	$55.4 \\ 53.0$	$43.2 \\ 39.2$	$45.1 \\ 42.2$	

Table 3: Impact of the training set on the performance of DeepCluster measured on the PASCAL VOC transfer tasks as described in Sec. 4.4 We compare ImageNet with a subset of 1M images from YFCC100M [31]. Regardless of the training set, DeepCluster outperforms the best published numbers on most tasks. Numbers for other methods produced by us are marked with a †

Method	AlexNet	VGG-16
ImageNet labels	56.8	67.3
Random	47.8	39.7
Doersch $et al.$ 25	51.1	61.5
Wang and Gupta 29	47.2	60.2
Wang $et al.$ 46	_	63.2
DeepCluster	55.4	65.9

Table 4: PASCAL VOC 2007 object detection with AlexNet and VGG-16. Numbers are taken from Wang *et al.* 46.

Method	Oxford5K	Paris6K
ImageNet labels	72.4	81.5
Random	6.9	22.0
Doersch <i>et al.</i> 25	35.4	53.1
Wang $et al.$ 46	42.3	58.0
DeepCluster	61.0	72.0

Table 5: mAP on instance-level image retrieval on Oxford and Paris dataset with a VGG-16. We apply R-MAC with a resolution of 1024 pixels and 3 grid levels [70].

Conclusions

- Works also with random Flickr images
- •

Appendix

Deep learning building block

- Each layer contains a number of units
- Loosely inspired by biological neurons
- Deep networks can consist of millions of units
- w₁, ..., w_n learned parameters

Deep learning layer

- In practice: neurons arranged in layers
- Each layer:
 - linear transformation of input vector
 - non-linear squashing-function

